New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

RFL1N18, RFL1N20

1A, 180V and 200V, 3.65 Ohm, N-Channel Power MOSFETs

Features

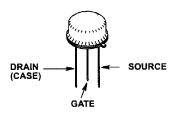
- 1A, 180V and 200V
- r_{DS(ON)} = 3.65Ω
- SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- · High Input Impedance
- · Majority Carrier Device

Description

These are N-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Symbol

Ordering Information


PART NUMBER	PACKAGE	BRAND	
RFL1N18	TO-205AF	RFL1N18	
RFL1N20	TO-205AF	RFL1N20	

NOTE: When ordering, use the entire part number.

Packaging

JEDEC TO-205AF

N J S

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	RFL1N18	RFL1N20	UNITS
Drain to Source Breakdown Voltage (Note 1)VDS	180	200	V
Drain to Gate Voltage (R _{GS} = 1MΩ) (Note 1)V _{DGR}	180	200	V
Continuous Drain Current	1	1	Α
Pulsed Drain CurrentIDM	5	5	Α
Gate to Source Voltage VGS	±20	±20	V
Maximum Power Dissipation	8.33	8.33	W
Linear Derating Factor	0.0667	0.0667	W/°C
Operating and Storage Temperature	-55 to 150	-55 to 150	°C
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s	300 260	300 260	°C °C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

$\textbf{Electrical Specifications} \hspace{0.5cm} \textbf{T}_{C} = 25^{o}\text{C, Unless Otherwise Specified}$

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage RFL1N18	BV _{DSS}	I _D = 250μA, V _{GS} = 0V		180	-	-	٧
RFL1N20				200	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250μA, (Figure 8)		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 0.8 x Rated BV _{DSS}	T _C = 25°C	-	-	1	μΑ
			T _C = 125°C	-	-	25	μΑ
Gate to Source Leakage Current	IGSS	$V_{GS} = \pm 20V, V_{DS} = 0V$		-	-	±100	nA
Drain to Source On-Voltage (Note 2)	V _{DS(ON)} I _D = 1A, V _{GS} = 10V		-	-	3.65	٧	
	, ,	I _D = 2A, V _{GS} = 10V		-	-	8.3	V
Drain to Source On Resistance (Note 2)	r _{DS} (ON)	I _D = 1A, V _{GS} = 10V, (Figures 6, 7)		-	-	3.65	Ω
Forward Transconductance (Note 2)	9fs	I _D = 1A, V _{DS} = 10V, (Figure 10)		400	-	-	S
Turn-On Delay Time	t _{d(ON)}	$I_D = 1A$, $V_{DD} = 100V$ R _{GS} = 50Ω , $V_{GS} = 10V$, (Figures 11, 12, 13)		-	15	25	ns
Rise Time	t _r			-	20	30	ns
Turn-Off Delay Time	t _d (OFF)			-	25	40	ns
Fall Time	t _f			-	30	50	ns
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz,	-	-	200	pF	
Output Capacitance	Coss	(Figure 9)		-	-	60	pF
Reverse Transfer Capacitance	C _{RSS}			-	-	25	pF
Thermal Resistance Junction to Case	$R_{\theta JC}$	<u> </u>		-	-	15	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 1A	-	_	1.4	٧
Diode Reverse Recovery Time	t _{rr}	I _{SD} = 2A, dI _{SD} /dt = 50A/μs	-	200	-	ns